

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ИНСТИТУТ ТЕХНОЛОГИЙ (ФИЛИАЛ) ФЕДЕРАЛЬНОГО ГОСУДАР-СТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

«ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» В Г. ВОЛГОДОНСКЕ РОСТОВСКОЙ ОБЛАСТИ

(Институт технологий (филиал) ДГТУ в г. Волгодонске)

УТВЕРЖДАЮ
И.о. директора
Н.М. Сидоркина
«24» апреля 2023 г.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ (ОЦЕНОЧНЫЕ СРЕДСТВА)

для проведения текущего контроля и промежуточной аттестации

по дисциплине

«Исследование операций»

для обучающихся по направлению подготовки 09.03.02 Информационные системы и технологии профиль Информационные системы

год набора 2022

Волгодонск 2023

Лист согласования

Оценочные материалы (оценочные средства	а) по дисциплине	
Исследование опе	раций	
(наиме	енование)	
составлены в соответствии с требованиями зовательного стандарта высшего образован альности)	ия по направлению подготовки (сп	_
	ные системы и технологии	
(код направления (специ	иальности), наименование)	
Разработчики оценочных материалов (оцености. преподаватель подпись	очных средств) _ Л.Н. Столяр	
Заведующий кафедрой подпись	Н.В. Кочковая	
Согласовано: Представитель работодателя или объединения работодателей директор НПЦ «Микроэлектроника»	С.Л. Бондаренко И.О.Ф.)
Представитель работодателя или объединения работодателей руководитель отдела ИТ ООО «Профит»	А.А. Сердюко И.О.Ф.	ЭΒ

Лист визирования оценочных материалов (оценочных средств) на очередной учебный год

Оценочные материалы (оценочные средства)			_
ций» проанализированы и признаны актуалы	ными для ис	пользования на 20	20
учебный год.			
Протокол заседания кафедры «ТСиИТ»от «	» 2	.0 г. №	
Заведующий кафедрой «ТСиИТ»	Н.	В.Кочковая	
Протокол заседания кафедры «ТСиИТ»от «		20 г.	
Оценочные материалы (оценочные средства)	по дисципл	ине «Исследовани	е опера-
ций» проанализированы и признаныактуальнучебный год.	ыми для ист	пользования на 20_	20
Протокол заседания кафедры «ТСиИТ»от «	» 2	.0 г. №	
Заведующий кафедрой «ТСиИТ»	H.	—————————————————————————————————————	
Заведующий кафедрой «ТСиИТ» «		20 г.	
Оценочные материалы (оценочные средства) ций» проанализированы и признаныактуальнучебный год. Протокол заседания кафедры «ТСиИТ»от «	ыми для ист »2	пользования на 20_ 20 г. № В.Кочковая	20
Оценочные материалы (оценочные средства) ций» проанализированы и признаныактуальн учебный год. Протокол заседания кафедры «ТСиИТ»от «	ыми для ис	пользования на 20_	20
заведующии кафедрои «1Сии1»	H.	В.КОЧКОВАЯ	
<u> </u>			

Содержание

, , , <u>, , , , , , , , , , , , , , , , </u>	_
	C.
1 Паспорт оценочных материалов (оценочных средств)	
1.1 Перечень компетенций, формируемых дисциплиной (модулем), с указа-	5
нием этапов их формирования в процессе освоения ОПОП	
1.2 Описание показателей и критериев оценивания компетенций на	13
различных этапах их формирования	
1.3 Методические материалы, определяющие процедуры оценивания знаний,	16
умений, навыков и (или) опыта деятельности, характеризующих этапы фор-	
мирования компетенций, описание шкал оценивания	
2 Контрольные задания (демоверсии) для оценки знаний, умений, навыков и	17
(или) опыта деятельности, характеризующих этапы формирования компе-	
тенций в процессе освоения образовательной программы	
Приложение А Карта тестовых заданий	29

1 Паспорт оценочных материалов (оценочных средств)

Оценочные материалы (оценочные средства) прилагаются к рабочей программе дисциплины, и представляет собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения обучающимся установленных результатов обучения.

Оценочные материалы (оценочные средства) используются при проведении текущего контроля успеваемости и промежуточной аттестации обучающихся.

1.1 Перечень компетенций, формируемых дисциплиной, с указанием этапов их формирования в процессе освоения ОПОП

Перечень компетенций, формируемых в процессе изучения дисциплины:

УК-1: Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач (табл. 1).

Таблица 1 Формирование компетенций в процессе изучения дисциплины

		таолица т Формированц	ис компетенции в п	роцессе изучени	и дисциплины	
Код ком-			Вид учебных заня-	Контролируемые	Оценочные материалы	Критерии оценива-
петенции	Индикаторы достижения компетенции		тий, работы 1 ,	разделы и темы	(оценочные средства),	ния компетенций ⁴
			формы и методы	дисциплины ³	используемые для	
			обучения, способ-		оценки уровня сфор-	
			ствующие форми-		мированности компе-	
			рованию и разви-		тенции	
			тию компетенции ²			
	УК-1.1	Знает принципы сбора, отбора				Ответы на контроль-
		и обобщения информации,	Лекц.	1.1-1.2		ные вопросы;
		общие положения теории иссле-	Практ. Занятия	2.1-2.2		посещаемость заня-
		дования операций, основные ме-	CP	3.1-3.6	УО	тий;
		тодологические и методические		4.1-4.7	Тестовые задания	познавательная ак-
		положения математического мо-		5.1-5.5	тестовые задания	тивность на заняти-
		делирования задач исследования		6.1-6.3		ях;
		операций; математическую по-		7.1-7.7		выполнение индиви-
УК-1.		становку задач оптимизации; ос-				дуального задания
J K-1.		новы теории оптимальных реше-				для СРС;
		ний;				умение делать выво-
	УК-1.2	Умеет соотносить разнород-	Лекц.			ды.
	ные явления и систематизировать их в рамках избранных видов профессиональной	Практ. занятия		индивидуальное за-		
		(решение типовых		дание для СРС		
		задач)		Тестовые задания		
		деятельности,	СР (анализ ситуа-		тостовые задания	
	строить математические модели		ции)			
		задач линейного программиро-	ции)			

_

 $^{^{1}}$ Лекционные занятия, практические занятия, лабораторные занятия, самостоятельная работа

² Необходимо указать активные и интерактивные методы обучения (например, интерактивная лекция, работа в малых группах, методы мозгового штурма, решение творческих задач, работа в группах, проектные методы обучения, ролевые игры, тренинги, анализ ситуаций и имитационных моделей и др.), способствующие развитию у обучающихся навыков командной работы, межличностной коммуникации, принятия решений, лидерских качеств

³ Указать номера тем в соответствии с рабочей программой дисциплины

⁴Необходимо выбрать критерий оценивания компетенции: посещаемость занятий; подготовка к практическим занятиям; подготовка к лабораторным занятиям; ответы на вопросы преподавателя в рамках занятия; подготовка докладов, эссе, рефератов; умение отвечать на вопросы по теме лабораторных работ, познавательная активность на занятиях, качество подготовки рефератов и презентацией по разделам дисциплины, контрольные работы, экзамены, умение делать выводы и др.

ный метод решения, обосновы- вать свой выбор.

1.2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Оценивание результатов обучения по дисциплине осуществляется в соответствии с Положением о текущем контроле и промежуточной аттестации обучающихся.

По дисциплине «Исследование операций» предусмотрены следующие виды контроля: текущий контроль (осуществление контроля всех видов аудиторной и внеаудиторной деятельности обучающегося с целью получения первичной информации о ходе усвоения отдельных элементов содержания дисциплины); промежуточная аттестация (оценивается уровень и качество подготовки по дисциплине в целом).

Текущий контроль в семестре проводится с целью обеспечения своевременной обратной связи, для коррекции обучения, активизации самостоятельной работы обучающихся. Текущий контроль служит для оценки объёма и уровня усвоения обучающимся учебного материала одного или нескольких разделов дисциплины (модуля) в соответствии с её рабочей программой и определяется результатами текущего контроля знаний обучающихся.

Текущий контроль осуществляется два раза в семестр по календарному графику учебного процесса.

Текущий контроль предполагает начисление баллов за выполнение различных видов работ. Результаты текущего контроля подводятся по шкале балльно-рейтинговой системы. Регламент балльно-рейтинговой системы определен Положением о системе «Контроль успеваемости и рейтинг обучающихся».

Текущий контроль успеваемости предусматривает оценивание хода освоения дисциплины: теоретических основ и практической части.

При обучении по заочной форме обучения текущий контроль не предусмотрен.

Промежуточная аттестация по дисциплине «*Исследование операций*» проводится в форме экзамена. В табл. 2 приведено весовое распределение баллов и шкала оценивания по видам контрольных мероприятий.

Таблица 2 - Весовое распределение баллов и шкала оценивания по видам контрольных мероприятий

Текущий	Промежу-	Итоговое количе-	
(50 бал	точная ат-	ство баллов по	
Блок 1	Блок 1 Блок 2		результатам те-
		(50 баллов)	кущего контроля

⁵ Вид занятий по дисциплине (лекционные, практические, лабораторные) определяется учебным планом. Количество столбцов таблицы корректируется в зависимости от видов занятий, предусмотренных учебным планом. Распределение баллов по блокам,по каждому виду занятий в рамках дисциплины определяет преподаватель. Распределение баллов по дисциплине утверждается протоколом заседания кафедры. По заочной форме обучения мероприятия текущего контроля не предусмотрены.

					и промежуточной
					аттестации
Лекционные	Лаборатор-	Лекционные	Лаборатор-		Менее 41 балла –
занятия (X_{1})	ные занятия	занятия (X_2)	ные занятия	от 0 до 50	неудовлетвори-
	(\mathbf{Y}_1)		(\mathbf{Y}_2)	баллов	тельно;
5	15	5	25		41-60баллов –
Сумма баллов з	ва 1 блок = X ₁	Сумма баллог	з за 2 блок =		удовлетворитель-
$+Y_1=20$		$X_2 + Y_2 = 30$			но;
					61-80 баллов –
					хорошо;
					81-100 баллов —
					отлично

Для определения фактических оценок каждого показателя выставляются следующие баллы (табл.3):

Таблица 3- Распределение баллов по дисциплине

Вид учебных работ по Количество баллов					
дисциплине					
	1 блок	2 блок			
Текущи	ий контроль (50 баллов)				
Посещение занятий.	5	5			
Практическая работа	15	25			
в том числе:					
- решение типовых задач на	5	5			
практических занятиях;					
- устные ответы по дисциплине	5	5			
(УО);					
- решение тестовых заданий (Т).	5	5			
Выполнение индивидуального	10	15			
задания для СРС.					
	20	30			
Промежуто	ная аттестация (50 балл	тов)			
Экзамен по дисциплине «Исследован	ние операций» проводится в	устной форме			
Сумма баллов по дисциплине 100	баллов				

Экзамен является формой итоговой оценки качества освоения обучающимся образовательной программы по дисциплине в целом или по разделу дисциплины. По результатам экзамена обучающемуся выставляется оценка «отлично», «хорошо», «удовлетворительно», или «неудовлетворительно».

Оценка «отлично» (81-100 баллов) выставляется обучающемуся, если:

- обучающийся набрал по текущему контролю необходимые и достаточные баллы для выставления оценки автоматом 6 ;
- обучающийся знает, понимает основные положения дисциплины, демонстрирует умение применять их для выполнения задания, в котором нет явно указанных способов решения;

 6 Количество и условия получения необходимых и достаточных для получения автомата баллов определены Положением о системе «Контроль успеваемости и рейтинг обучающихся»

9

- обучающийся анализирует элементы, устанавливает связи между ними, сводит их в единую систему, способен выдвинуть идею, спроектировать и презентовать свой проект (решение);
- ответ обучающегося по теоретическому и практическому материалу, содержащемуся в вопросах экзаменационного билета, является полным, и удовлетворяет требованиям программы дисциплины;
- обучающийся продемонстрировал свободное владение концептуально-понятийным аппаратом, научным языком и терминологией соответствующей дисциплины;
- на дополнительные вопросы преподавателя обучающийся дал правильные ответы.

Компетенция (и) или ее часть (и) сформированы на высоком уровне (уровень 3) (см. табл. 1).

Оценка «хорошо» (61-80 баллов) выставляется обучающемуся, если:

- обучающийся знает, понимает основные положения дисциплины, демонстрирует умение применять их для выполнения задания, в котором нет явно указанных способов решения; анализирует элементы, устанавливает связи между ними;
- ответ по теоретическому материалу, содержащемуся в вопросах экзаменационного билета, является полным, или частично полным и удовлетворяет требованиям программы, но не всегда дается точное, уверенное и аргументированное изложение материала;
- на дополнительные вопросы преподавателя обучающийся дал правильные ответы;
- обучающийся продемонстрировал владение терминологией соответствующей дисциплины.

Компетенция (и) или ее часть (и) сформированы на среднем уровне (уровень 2) (см. табл. 1).

Оценка «удовлетворительно» (41-60 баллов) выставляется обучающемуся, если:

- обучающийся знает и воспроизводит основные положения дисциплины в соответствии с заданием, применяет их для выполнения типового задания в котором очевиден способ решения;
- обучающийся продемонстрировал базовые знания важнейших разделов дисциплины и содержания лекционного курса;
- у обучающегося имеются затруднения в использовании научно-понятийного аппарата в терминологии курса;
- несмотря на недостаточность знаний, обучающийся имеется стремление логически четко построить ответ, что свидетельствует о возможности последующего обучения.

Компетенция (и) или ее часть (и) сформированы на базовом уровне (уровень 1) (см. табл. 1).

Оценка «неудовлетворительно» (менее 41 балла) выставляется обучающемуся, если:

- обучающийся имеет представление о содержании дисциплины, но не знает основные положения (темы, раздела, закона и т.д.), к которому относится задание, не способен выполнить задание с очевидным решением, не владеет навыками построения стандартных теоретических и эконометрических моделей, методикой стратегического планирования на примере предприятии;
- у обучающегося имеются существенные пробелы в знании основного материала по дисциплине;
- в процессе ответа по теоретическому материалу, содержащемуся в вопросах экзаменационного билета, допущены принципиальные ошибки при изложении материала.

Компетенция(и) или ее часть (и) не сформированы.

1.3 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Формы текущего контроля знаний:

- устный опрос;
- тестирование;
- -индивидуальное задание для самостоятельной работы студента (СРС).

Индивидуальное задание для СРС

Индивидуальное задание — это один из основных видов самостоятельной работы обучающихся и важный этап их профессиональной подготовки. Основными целями выполнения индивидуальное задания для СРС являются: расширение и углубление знаний обучающихся, выработка приемов и навыков в решении задач. Обучающийся, при выполнении индивидуального задания должен показать умение применять аналитические и геометрические методы решения задач.

Индивидуальное задание состоит из пяти задач. В таблицах с условием задачи параметры А и Б имеют следующий смысл:

АБ – две последние цифры номера зачётной книжки студента.

- А число десятков в номере,
- Б число единиц в номере.

Студентам в процессе оформления индивидуального задания необходимо выполнить ряд требований:

- 1 Индивидуальное задание должно быть выполнено в стандартной тетради (12-18 листов) в клетку.
- 2. Все задачи должны содержать условие и развернутый ответ, т.е. выводы, сформулированные в терминах условия задачи.
 - 3. Все таблицы должны быть пронумерованы и иметь названия.
 - 4. При решении задач графическим методом все графики необходимо выполнять размером не менее чем пол листа.

Защита индивидуального задания производится студентом в день их выполнения в соответствии с планом-графиком. Преподаватель проверяет правильность выполнения задания студентом, контролирует знание студентом пройденного материала с помощью контрольных вопросов или тестирования. За

каждое верно выполненное задание выставляется 5 баллов, максимальная оценка 25 баллов.

При обучении по заочной форме обучения выполнение индивидуального задания для самостоятельной работы студента обязательно при подготовке к экзамену

Проработка конспекта лекций и учебной литературы осуществляется студентами в течение всего семестра, после изучения новой темы. Перечень вопросов для устного опроса определен содержанием тем в РПД и методическими рекомендациями по изучению дисциплины.

Студенты, которые при решении заданий, используют навыки программирования, получают дополнительно 5 баллов.

Оценка качества подготовки на основании выполненных заданий ведется преподавателем (с обсуждением результатов), баллы начисляются в зависимости от сложности задания.

Итоговый контроль освоения умения и усвоенных знаний дисциплины «Исследование операций» осуществляется в процессе промежуточной аттестации на экзамене.

2 Контрольные задания (демоверсии) для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

2.1 Задания для оценивания результатов обучения в виде знаний

Вопросы к экзамену по дисциплине «Исследование операций» Раздел 1

- 1. Математическая модель и ее основные элементы. Основные типы моделей.
- 2. Примеры задач линейного программирования: задача об оптимальном планировании производства и её математическая модель.
- 3. Примеры задач линейного программирования: задача о рационе её математическая модель.
- 4. Допустимый и оптимальный планы задачи линейного программирования. Раздел 2
- 5. Геометрический смысл линейных неравенств в пространстве R^2 .
- 6. Уравнение отрезка в пространстве R^2 . Выпуклые множества. Примеры. Крайняя точка выпуклого множества. Выпуклый многоугольник. Линии уровня линейной функции и их основное свойство.
- 7. Основная теорема линейного программирования.
- 8. Определение базисных и свободных переменных системы линейных уравнений. Базисное решение системы линейных уравнений.
- 9. Стандартная, каноническая и общая задачи линейного программирования. Матричная форма записи задач линейного программирования.
- 10. Приведение задач линейного программирования к каноническому виду. Теоремы о связи между допустимыми и оптимальными планами задачи линейного программирования и соответствующей канонической задачи.
- 11. Идея симплекс-метода. Симплекс-таблица.

- 12. Правило выбора разрешающего столбца в симплекс-таблице для задачи линейного программирования в случае, когда свободные члены системы ограничений положительны, и его обоснование. Правило выбора разрешающей строки в симплекс-таблице и его обоснование.
- 13. Критерий оптимальности опорного плана при решении задачи линейного программирования симплекс-методом.

Раздел 3

- 14. Постановка и математическая модель транспортной задачи.
- 15. Виды моделей транспортной задачи. Критерий разрешимости транспортной задачи.
- 16. Методы построения исходного опорного плана. Вырожденный и невырожденный опорные планы.
- 17. Определение потенциалов распределительной таблицы транспортной задачи.
- 18. Оценка пустой клетки распределительной таблицы и ее экономический смысл.
- 19. Достаточный признак оптимальности транспортной задачи.
- 20. Определение цикла. Условия, при которых допустимый план, построенный спомощью распределительной таблицы, является опорным.
- 21. Определение максимального объема груза, перемещаемого по циклу.
- 22. Транспортная задача с нарушенным балансом производства и потребления Раздел 4
- 23. Понятие о двойственной задаче линейного программирования на примере задачи об оценивании ресурсов.
- 24. Достаточный признак разрешимости двойственной задачи.
- 25. Правила построения математической модели двойственной задачи.
- 26. Первая и вторая теоремы двойственности.
- 27. Экономический смысл двойственных оценок.

Раздел 5

28. Постановка задачи целочисленного программирования и ее решение методом Гомори.

Перечень вопросов для устного опроса определен содержанием темы в РПД и методическими рекомендациями по изучению дисциплины.

Перечень примерных вопросов к устному опросу по разделам

Модели задач линейного программирования

- 1. Сформулируйте в общем виде задачу математического программирования.
- 2. Какие задачи относят к линейному программированию?
- 3. Что выражает целевая функция?
- 4. Из чего состоит математическая модель задачи ЛП?

Исследование операций

- 1. Какие задачи ЛП можно решать графическим методом?
- 2. Что такое угловая точка выпуклого множества?
- 3. Что такое линия уровня?
- 4. Сформулируйте алгоритм графического метода решения задачи ЛП.
- 5. Сколько решений может быть у задачи ЛП?
- 6. Какие задачи ЛП можно решать симплекс-методом?
- 7. В чем разница между базисными и свободными переменными?
- 8. Что такое допустимое решение?
- 9. В чем разница между дополнительными и искусственными переменными?

Транспортная задача

- 1. Открытая и закрытая модели транспортной задачи.
- 2. Чему должно равняться число заполненных клеток в опорном плане транспортной задачи?
- 3. Как вычисляются потенциалы?
- 4. Построение опорного плана методом «северо-западного» угла.
- 5. Как вычисляются оценки?
- 6. Критерий оптимальности плана

Двойственная задача ЛП

- 1. Какие задачи называются двойственными?
- 2. Опишите алгоритм построения двойственной задачи.
- 3. Сформулируйте основные теоремы двойственности.
- 4. Как найти решение двойственной задачи по известному решению прямой задачи?

Целочисленное линейное программирование

- 1. Какова сущность задачи целочисленного программирования?
- 2.Почему при решении ЗЦП нельзя округлить найденное нецелочисленное решение?
- 3.В чём сущность методов отсечения для решения ЗЦП?
- 4. Какое отсечение называется правильным?
- 5. Что такое целая и дробная часть числа?
- 6.Перечислите основные этапы алгоритма Гомори для полностью целочисленной ЗЛП.

Критерий оценки устного опроса:

- Полнота ответа на поставленный вопрос,
- умение использовать термины,
- умение приводить примеры,
- умение делать выводы,

- качество ответов на вопросы (четко отвечает на вопросы).

Шкала оценивания устного опроса:

Максимальная оценка – 5 баллов.

База тестовых вопросов для оценки уровня 1

ТЕСТЫ

- 1. Модель это
 - 1.1. аналог (образ) оригинала, но построенный средствами и методами отличными от оригинала +
 - 1.2. подобие оригинала
 - 1.3. копия оригинала
- 2. Экономико-математическая модель это
 - 2.1. математическое представление экономической системы (объектов, задачи, явлений, процессов и т. п.) +
 - 2.2. качественный анализ и интуитивное представление объектов, задач, явлений, процессов экономической системы и ее параметров
 - 2.3. эвристические описание экономической системы (объектов, задачи, явлений, процессов и т. п.)
- 3. Метод это
 - 3.1. подходы, пути и способы постановки и решения той или иной задачи в различных областях человеческой деятельности +
 - 3.2. описание особенностей задачи (проблемы) и условий ее решения
 - 3.3. требования к условиям решения той или иной задачи
- 4. Выберите неверное утверждение
 - 4.1. ЭММ позволяют сделать вывод о поведении объекта в будущем
 - 4.2. ЭММ позволяют управлять объектом +
 - 4.3. ЭММ позволяют выявить оптимальный способ действия
 - 4.4. ЭММ позволяют выявить и формально описать связи между переменными, которые характеризуют исследования
- 5. Экономико-математическая модель межотраслевого баланса это
 - 5.1. макроэкономическая, детерминированная, имитационная, матричная модель
 - 5.2. микроэкономическая, детерминированная, балансовая, регрессионная модель
 - 5.3. макроэкономическая, детерминированная, балансовая, матричная модель +
- 5.4. макроэкономическая, вероятностная, имитационная, матричная модель 6. Найти экстремум функции f(x) при выполнении ограничений Ri(x) = ai, $\phi(x) \le bi$, наложенных на параметры функции это задача
 - 6.1. условной оптимизации +
 - 6.2. линейного программирования
 - 6.3. безусловной оптимизации

- 6.4. нелинейного программирования
- 6.5. динамического программирования
- 7. Задача, включающая целевую функцию f и функции Ф, входящие в ограничения, является задачей линейного программирования, если
 - 7.1. все Φ и f являются линейными функциями относительно своих аргументов +
 - 7.2. все Φ являются линейными функциями относительно своих аргументов, а функция f нелинейна
 - 7.3. функция f является линейной относительно своих аргументов, а функции Φ нелинейны
 - 7.4. только часть функций Φ и функция f являются линейными относительно своих аргументов
- 8. Множество всех допустимых решений системы задачи линейного программирования
 - 8.1. является
 - 8.2. выпуклым +
 - 8.3. вогнутым
 - 8.4. одновременно выпуклым и вогнутым
- 9. Если задача линейного программирования имеет оптимальное решение, то целевая функция достигает нужного экстремального значения в одной из
 - 9.1. вершин многоугольника (многогранника) допустимых решений +
 - 9.2. внутренних точек многоугольника (многогранника) допустимых решений
 - 9.3. точек многоугольника (многогранника) допустимых решений
- 10. В задачах линейного программирования решаемых симплекс-методом искомые переменные должны быть
 - 10.1. неотрицательными +
 - 10.2. положительными
 - 10.3. свободными от ограничений
 - 10.4. любыми
- 11. Симплексный метод решения задач линейного программирования включает
 - 11.1. определение одного из допустимых базисных решений поставленной задачи (опорного плана)
 - 11.2. определение правила перехода к не худшему решению
 - 11.3. проверку оптимальности найденного решения
 - 11.4. определение одного из допустимых базисных решений поставленной задачи (опорного плана), определение правила перехода к не худшему решению, проверка оптимальности найденного решения +
- 12. Графический способ решения задачи линейного программирования это
 - 12.1. построение прямых, уравнения которых получаются в результате замены в ограничениях знаков неравенств на знаки точных равенств
 - 12.2. нахождение полуплоскости, определяемой каждым из ограничений задачи
 - 12.3. нахождение многоугольника допустимых решений

- 12.4. построение прямой F = h = const >= 0, проходящей через многоугольник решений
- 12.5. построение вектора C, перпендикулярного прямой F = h = const
- 12.6. передвижение прямой F = h = const в направлении вектора C (в сторону увеличения h), в результате чего находят либо точку (точки), в которой целевая функция принимает максимальное значение, либо устанавливают неограниченность сверху функции на множестве допустимых решений
- 12.7. определение координат точки максимума функции и вычисление значения целевой функции в этой точке
- 12.8. все перечисленные ответы в этом задании +
- 13. Задача линейного программирования не имеет конечного оптимума, если
 - 13.1. в точке А области допустимых значений достигается максимум целевой функции F
 - 13.2. в точке А области допустимых значений достигается минимум целевой функции F
 - 13.3. система ограничений задачи несовместна
 - 13.4. целевая функция не ограничена сверху на множестве допустимых решений +
- 14. При приведении задачи линейного программирования (ЛП) к виду основной задачи ЛП ограничения вида «< или =» преобразуются в ограничения равенства добавлением к его левой части дополнительной неотрицательной переменной. Вводимые дополнительные неизвестные имеют вполне определенный смысл. Так, если в ограничениях исходной задачи ЛП отражается расход и наличие производственных ресурсов, то числовое значение дополнительной переменной в решении задачи, записанной в виде основной имеет смысл
 - 14.1. двойственной оценки ресурса
 - 14.2. остатка ресурса +
 - 14.3. нехватки ресурса
 - 14.4. стоимости ресурса
- 15. Если ресурс образует «узкое место производства», то это означает
 - 15.1. ресурс избыточен
 - 15.2. ресурс использован полностью +
 - 15.3. двойственная оценка ресурса равна нулю
- 16. Критерием остановки вычислений в алгоритме поиска оптимального решения методами одномерной оптимизации является условие
 - 16.1. отношение длины текущего интервала неопределенности к длине первоначального интервала меньше заданной величины є
 - 16.2. значение целевой функции (ЦФ), вычисленное в текущей точке, меньше значения ЦФ, вычисленного в последующей точке
 - 16.3. отношение длины текущего интервала неопределенности к длине первоначального интервала больше заданной величины є
 - 16.4. значение Ц Φ , вычисленное в текущей точке, меньше значения Ц Φ , вычисленного в предыдущей точке +
- 17. Если целевая функция и все ограничения выражаются с помощью линейных уравнений, то рассматриваемая задача является задачей

- 17.1. динамического программирования
- 17.2. линейного программирования +
- 17.3. целочисленного программирования
- 17.4. нелинейного программирования
- 18. Модель задачи линейного программирования, в которой целевая функция исследуется на максимум и система ограничений задачи является системой уравнений, называется
 - 18.1. стандартной
 - 18.2. канонической +
 - 18.3. общей
 - 18.4. основной
 - 18.5. нормальной
- 19. Модель задачи линейного программирования, в которой целевая функция исследуется на максимум и система ограничений задачи является системой неравенств, называется
 - 19.1. стандартной
 - 19.2. канонической
 - 19.3. общей +
 - 19.4. основной
 - 19.5. нормальной
- 20. В линейных оптимизационных моделях, решаемых с помощью геометрических построений число переменных должно быть
 - 20.1. не больше двух +
 - 20.2. равно двум
 - 20.3. не меньше двух
 - 20.4. не больше числа ограничений +2
 - 20.5. сколько угодно
- 21. Задача линейного программирования может достигать максимального значения
 - 21.1. только в одной точке
 - 21.2. в двух точках
 - 21.3. во множестве точек
 - 21.4. в одной или двух точках
 - 21.5. в одной или во множестве точек+
- 22. Если в прямой задаче, какое либо ограничение является неравенством, то в двойственной задаче соответствующая переменная
 - 22.1. неотрицательна +
 - 22.2. положительна
 - 22.3. свободна от ограничений
 - 22.4. отрицательная
- 23. Транспортная задача является задачей Программирования
 - 23.1. динамического
 - 23.2. нелинейного
 - 23.3. линейного +
 - 23.4. целочисленного

- 23.5. параметрического
- 24. Если в транспортной задаче объем спроса равен объему предложения, то такая задача называется
 - 24.1. замкнутой
 - 24.2. закрытой +
 - 24.3. сбалансированной+
 - 24.4. открытой
 - 24.5. незамкнутой
- 25. Если в транспортной задаче объем запасов превышает объем потребностей, в рассмотрение вводят
 - 25.1. фиктивный пункт производства
 - 25.2. фиктивный пункт потребления +
 - 25.3. изменения структуры не требуются

Критерии оценки теста:

- 0,5 баллов за каждый правильный ответ на вопрос;
- 0 баллов обучающийся дал неправильный ответ на вопрос.

Шкала оценивания теста:

Более 50% правильных ответов из 10 тестовых вопросов—зачтено; менее 50% правильных ответов —незачтено.

2.2 Задания для оценивания результатов в виде владений и умений

Индивидуальное задание для СРС

Типовое задание

1. Задача об оптимальном планировании производства(L1)

Фирма оказывает сервисные услуги на двух производственных участках (П1 и П2). При этом используется три вида ресурсов: оборудование, рабочая сила и сырьё. Количество этих ресурсов в данном процессе известно и увеличено быть не может. Задан расход каждого из ресурсов и прибыль от реализации услуги на каждом из участков (См. табл.1). Определить объём оказания услуг на каждом из производственных участках, обеспечивающий максимальную прибыль от ее реализации.

Таблица 1.

Виды ресурсов	Производственные участки		Количество ре-
	П1 П2		сурсов
P1	2	1	A+10
P2	1	3	Б+10
P3	1	4	10
Прибыль от реали-	1	2	
зации услуги			

Задание 1

- 1. Построить математическую модель задачи L1,
- 2. Решить задачу L1графическим методом.
- 3. Найти целочисленное решение методом Гомори.

Задание 2

1. Решить задачу L1 симплекс – методом.

Задание 3

- 1. Сформулировать двойственную задачу L1+ (об оценивании ресурсов),
- 2. Построить математическую модель задачи L1+,
- 3. Решить задачу L1+, с помощью теорем двойственности.

2. Задача о смесях (L2)

Фирма покупает два различных вида сырья (продукты) П1 и П2 для приготовления смеси продуктов. Количество питательных веществ В1, В2, В3, В4 в единице сырья каждого вида, минимальное количество питательных веществ в смеси, цена единицы сырья каждого вида приведены в таблице 2. Определить количество каждого вида продукта, входящего в смесь минимальной стоимости. Таблица 2.

Виды пита-	Виды сырья		Минимальное ко-
тельных ве-			личество пита-
ществ	П1	П2	тельных веществ в
	111	112	смеси
B1	1	2	A+10
B2	4	1	Б+10
B3	2	0	16
B4	0	1	18
цена единицы	1	3	
сырья			

Задание 4

- 1. Построить математическую модель задачи L2,
- 2. Решить задачу L2 графическим методом.

3. Транспортная задача(L3)

Однородный груз необходимо доставить от поставщиков Пі к потребителям Вј. Запасы груза у поставщиков и потребности потребителей приведены в табли-

це 3. Тарифы (транспортные расходы при перевозке единицы груза от каждого поставщика к каждому потребителю) заданы в виде матрицы С. Составить такой план транспортировки грузов от поставщиков к потребителям, чтобы суммарная стоимость перевозки была минимальной.

Таблица 3

т иолици э					
Потребители		B1	B2	В3	B4
	Потребности				
		20 (Б+1)	10(Б+1)	50(Б+1)	40(Б+1)
Поставщики	Запасы				
П1	40(Б+1)	A+1	A+5	A+2	A+4
П2	60(Б+1)	A+2	A+3	A+4	A+1
П3	20(Б+1)	A+3	A+1	A+4	A+2

Матрица тарифов : (Ci,j) =
$$\begin{vmatrix} A+1 & A+5 & A+2 & A+4 \\ A+2 & A+3 & A+4 & A+1 \\ A+3 & A+1 & A+4 & A+2 \end{vmatrix}$$

Задание 5

- 1. Построить математическую модель;
- 2. Построить опорный план методом северо-западного угла и методом наименьшей стоимости, сравнить стоимости перевозки;
- 3. Решить задачу L3 методом потенциалов.

Критерии и шкала оценивания индивидуального задания для СРС

Критерии оценки индивидуального задания:

- -обучающийся знает основные положения дисциплины;
- -владеет методами решения задач в соответствии с заданием;
- -применяет их для выполнения типового задания, в котором очевиден способ решения;
- -соответствие решения сформулированным в практической ситуации вопросам.

Шкала оценивания индивидуального задания:

Индивидуальное задание для самостоятельной работы это письменная работа, представляющая собой расчеты, на основе данных предоставляемых преподавателем.

зачтено - обучающийся показал отличные владения навыками применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала;

- -знает основные положения дисциплины;
- -владеет методами решения задач в соответствии с заданием; применяет их для выполнения типового задания, в котором очевиден способ решения;

задание по работе выполнено в полном объеме; отчет выполнен аккуратно и в соответствии с предъявляемыми требованиями. (3-5 баллов).

незачтено - при выполнении задания обучающийся продемонстрировал недостаточный уровень владения умениями и навыками при решении профессиональных задач в рамках усвоенного учебного материала; не выполнил все задания работы и не может объяснить полученные результаты; при ответах на дополнительные вопросы на защите было допущено множество неточностей (0-2 балла).

- каждая правильно решенная задача 5 баллов.
- максимальное количество баллов за выполненную работу 25 баллов.

Практические задания к экзамену

Задание 1.

1. Решить графически задачу линейного программирования:

$$x+3y \rightarrow \max$$

$$\begin{cases} x+y \le 2 \\ 2x+3y \ge 3 \\ x, y \ge 0 \end{cases}$$

2. Решить графически ЗЛП.

$$z = 2x_1 + x_2 \rightarrow \max\left(\min\right)$$

$$\begin{cases} 2x_1 + x_2 \ge 4\\ x_1 + x_2 \le 5 \end{cases}$$

$$x_1, x_2 \ge 0$$

3. Решить графически ЗЛП.

$$z = 2x_1 + x_2 \longrightarrow \max\left(\min\right)$$

$$\begin{cases}
-2x_1 + x_2 \ge -2 \\
x_1 \ge 0 \\
0 \le x_2 \le 1
\end{cases}$$

4. Решить графически ЗЛП.

$$z = x_1 + x_2 \longrightarrow \max(\min)$$

$$\begin{cases} x_1 + x_2 \le 2 \\ x_1 + x_2 \ge 1 \\ x_1, x_2 \ge 0 \end{cases}$$

Задание 2. Решить симплекс-методом задачу линейного программирования:

$$x-4y+2z+t \rightarrow \min$$

$$\begin{cases} x+5y-3z=6\\ 2x-7y+5z-8t=1\\ x,y,z,t \ge 0 \end{cases}$$

Задание 3.

1. Дана задача линейного программирования $F(x) = x_1 + 6x_2 \rightarrow \max$. Найти область допустимых значений:

$$\begin{cases} 2x_1 \le 14 \\ x_1 + 3x_2 \le 6 \\ 4x_1 + x_2 \le 8 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

2. Дана задача линейного программирования $F(x) = 6x_1 + 2x_2 \rightarrow min$. Найти область допустимых значений:

$$\begin{cases} 4x_2 \ge 6 \\ 5x_1 \ge 20 \\ 20x_1 + x_2 \ge 10 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

3. Дана задача линейного программирования $F(x) = 100x_1 + 200x_2 \rightarrow \max$. Найти область допустимых значений:

$$\begin{cases} 14x_1 + 7x_2 \le 42 \\ x_1 + 2x_2 \le 16 \\ X_2 \le 16 \\ x_1 \le 0, x_2 \le 0 \end{cases}$$

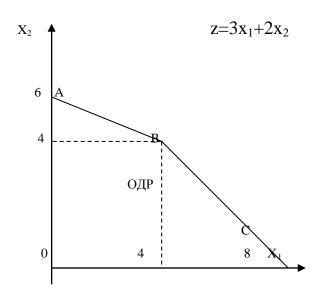
4. Дана задача линейного программирования $F(x) = 25x_{1+}x_2 \rightarrow min$. Найти область допустимых значений:

$$\begin{cases} 5 x_1 + 20x_2 \ge 100 \\ x_1 + 10 x_2 \ge 300 \\ 4x_1 + 16x_2 \ge 100 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

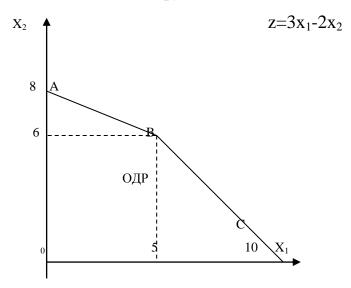
5. Дана задача линейного программирования $F(x) = 1,5 \ x_1 + 3x_2 \rightarrow \max$. Найти область допустимых значений:

$$\begin{cases} 1,3 \ x_1 \le 13 \\ 7x_2 \le 42 \\ 4x_1 + 8x_2 \le 20 \\ x_1 \le 0, x_2 \le 0 \end{cases}$$

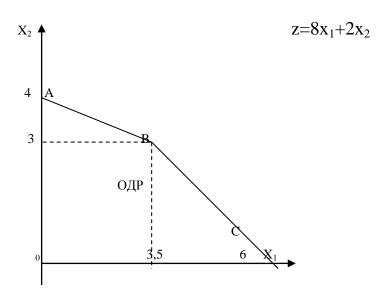
Задание 4. Найти оптимальный план для следующих транспортных задач (в верхней строке таблиц указаны потребности b_j в грузе пунктов B_j ; в левом столбце - запасы груза a_i в пунктах A_i ; в остальных клетках - тарифы c_{ij}):

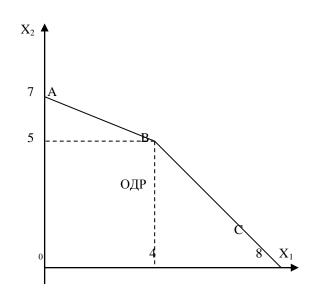

_ 1.						
$A_i \setminus B_j$	50		80		90	
- · · j						
110		7		8		1
110		2		4		5

2.

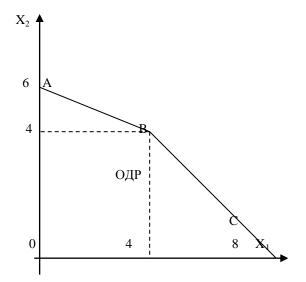

$A_i \setminus B_j$	40	60	40
60	2	2	3
80	6	4	3

Задание 5.


1. Известна область допустимых значений задачи линейного программирования и целевая функция. Найти максимальное значение функции z.


2. Известна область допустимых значений задачи линейного программирования и целевая функция. Найти максимальное значение функции z.

3. Известна область допустимых значений задачи линейного программирования и целевая функция. Найти максимальное значение функции z.



4. Известна область допустимых значений задачи линейного программирования и целевая функция. Найти максимальное значение функции z.

$$z = -5x_1 + 2x_2$$

5. Известна область допустимых значений задачи линейного программирования и целевая функция. Найти максимальное значение функции z.

$$z = -8x_1 - 3x_2$$

Структура экзаменационного билета:

- 1. Теоретический вопрос (Уровень 1)
- 2. Практическое задание (Уровень 2)

3. Практическое задание (Уровень 3)

Методика формирования оценки и критерии оценивания промежуточной аттестации (экзамен):

максимальное количество баллов при полном раскрытии вопросов и верном решении практической задачи билета:

- 1 теоретический вопрос (1 уровень) -20 баллов;
- 2 практическое задание (2 уровень) -15 баллов;
- 3 практическое задание *(3 уровень)* -15 баллов; Итого: экзамен 50 баллов.

Пример экзаменационного билета

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Институт технологий (филиал) федерального государственного бюджетного образовательного учреждения высшего образования

«Донской государственный технический университет» в г. Волгодонске Ростовской области (Институт технологий (филиал) ДГТУ в г. Волгодонске)

Факультет	Технологии и менеджмент	
Кафедра	«ТСиИТ»	
	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № <u>1</u>	
	на <u>2023</u> / <u>2024</u> учебный год	
Дисциплина _	<u>Исследование операций</u>	

- 1. Математическая модель и ее основные элементы. Основные типы моделей.
- 2. Найти оптимальный план для следующих транспортных задач (в верхней строке таблиц указаны потребности b_j в грузе пунктов B_j ; в левом столбце запасы груза a_i в пунктах A_i ; в остальных клетках тарифы c_{ij}):

$A_i \setminus B_j$	50	80	90
110	7	8	1
110	2	4	5

3. Дана задача линейного программирования $F(x) = 100x_1 + 200x_2 \rightarrow \max$. Найти область допустимых значений:

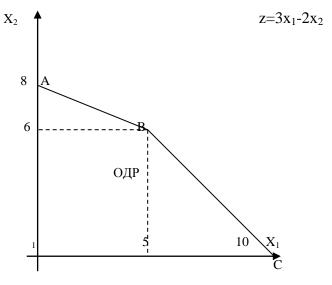
$$\begin{cases} 14x_1 + 7x_2 \le 42 \\ x_1 + 2x_2 \le 16 \\ X_2 \le 16 \\ x_1 \le 0, x_2 \le 0 \end{cases}$$

Зав. кафедрой		Н.В.Кочковая	01.09.20
	Подпись	Ф.И.О.	Лата

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Институт технологий (филиал) федерального государственного бюджетного образовательного учреждения высшего образования

«Донской государственный технический университет» в г. Волгодонске Ростовской области (Институт технологий (филиал) ДГТУ в г. Волгодонске)


Факультет	Технологии и менеджмент	
Кафедра	«ТСиИТ»	
	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № <u>2</u> _	
	на <u>2023 / 2024</u> учебный год	
Дисциплина	Исследование операций	

- 1. Постановка и математическая модель транспортной задачи.
- 2. Решить графически ЗЛП.

$$z = 2x_1 + x_2 \longrightarrow \max\left(\min\right)$$

$$\begin{cases}
-2x_1 + x_2 \ge -2 \\
x_1 \ge 0 \\
0 \le x_2 \le 1
\end{cases}$$

3. Известна область допустимых значений задачи линейного программирования и целевая функция. Найти максимальное значение функции z.

 Зав. кафедрой
 _____ Н.В.Кочковая_____
 01.09.20--______

 Подпись
 Ф.И.О.
 Дата

Приложение **А** Карта текстовых заданий

Карта тестовых заданий

Компетенция УК-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

Индикатор УК-1.3 Имеет практический опыт работы с информационными источниками, опыт научного поиска, создания научных текстов

Дисциплина Исследование операций

Описание теста:

- 1. Тест состоит из 70 заданий, которые проверяют уровень освоения компетенций обучающегося. При тестировании каждому обучающемуся предлагается 30 тестовых заданий по 15 открытого и закрытого типов разных уровней сложности.
- 2. За правильный ответ тестового задания обучающийся получает 1 условный балл, за неправильный ответ 0 баллов. По окончании тестирования, система автоматически определяет «заработанный итоговый балл» по тесту, согласно критериям оценки
 - 3 Максимальная общая сумма баллов за все правильные ответы составляет 100 баллов.
- 4. Тест успешно пройден, если обучающийся правильно ответил на 70% тестовых заданий (61 балл).
- 5. На прохождение тестирования, включая организационный момент, обучающимся отводится не более 45 минут. На каждое тестовое задание в среднем по 1,5 минуты.
- 6. Обучающемуся предоставляется одна попытка для прохождения компьютерного тестирования.

Кодификатором теста по дисциплине является раздел рабочей программы «4. Структура и содержание дисциплины (модуля)»

Комплект тестовых заданий

Задания закрытого типа Задания альтернативного выбора

Выберите один правильный ответ

Простые (1 уровень)

- 1 Укажите правильное определение модели:
- А) Метод научного познания реально существующих объектов
- Б) Способ достижения цели, определенным образом упорядоченная
- В) Материально или мысленно представляемый объект, который в процессе исследования замещает объект оригинал; при этом отражает его наиболее существенные свойства
- 2 Множество всех допустимых решений системы задачи линейного программирования является:
- А) Вогнутым
- Б) Одновременно выпуклым и вогнутым

В) Выпуклым

- 3 Алгоритм перехода к новому опорному плану транспортной задачи, дающему меньшее значение функции цели, до обнаружения оптимального плана называется
- А) Алгоритм метода Гомори
- Б) Алгоритм симплекс метод
- В) Алгоритм улучшения плана транспортной задачи
- 4 Укажите в какой роли критерия оптимальности могут выступать
- А) Максимум прибыли
- Б) Издержки
- В) Прибыль
- 5 Укажите, оптимизационная модель состоит из:
- А) Уравнений, тождеств и неравенств
- Б) Целевой функции; области допустимых решений; системы ограничений, определяющими эту область
- В) Целевой функции; системы ограничений, определяющими эту область

Средне -сложные (2 уровень)

- 6 Укажите определение «моделирование»
- А) Конструирование моделей
- Б) Процесс построения, изучения и применения моделей
- В) Процесс построения моделей
- 7 Укажите область допустимых решений это область, в пределах которой осуществляется:
- А) Выбор решений
- Б) Выбор целевой функции
- В) Решение системы уравнений
- 8 Укажите, что такое целевая функция это:
- А) Подробное математическое изложение цели данной задачи
- Б) Краткое математическое изложение решения данной задачи
- В) Краткое математическое изложение цели данной задачи
- 9 Укажите, транспортная задача является задачей:
- А) Линейного программирования
- Б) Целочисленного программирования
- В) Дискретного программирования
- 10 Укажите, что подавляющее большинство методов оптимизации, позволяет находить
- А) Только глобальные экстремумы
- Б) Только локальные экстремумы
- В) Нули целевой функции
- 11 Укажите в моделях смесевых задач в качестве искомых переменных выступает:
- А) Объем (количество) получаемой смеси
- Б) Количество исходных компонентов, которое входит в готовую смесь
- В) Цена исходных компонентов

- 12 Укажите критерий оптимальности это показатель, который выражает:
- А) Предельную меру экономического эффекта решения
- Б) Среднюю меру экономического эффекта решения
- В) Суммарную меру экономического эффекта решения
- 13 Основным методом решения транспортной задачи является:
- А) Метод северо-западного угла
- Б) Венгерский алгоритм
- В) Метод потенциалов
- 14 Математической моделью конфликтных ситуаций является:
- А) Имитационная модель
- Б) Транспортная модель
- В) Теория игр
- 15 Укажите, к смесевым задачам относится задача составления:
- А) Рационального раскроя
- Б) Рационального питания
- В) Рационального использования ресурсов
- 16 Укажите основную цель решения транспортной задачи
- А) Уменьшение количества пунктов назначения
- Б) Минимизация количества перевозимого груза
- В) Минимизация затрат на перевозки продукции
- 17 Укажите какая задача является задачей линейного программирования:
- А) Составление диеты
- Б) Управления запасами
- В) Формирование календарного плана реализации проекта
- 18 Укажите множество n мерного арифметического точечного пространства называется выпуклым, если:
- А) Счетно и замкнуто
- Б) Равно объединению нескольких конечных множеств
- В) Вместе с любыми двумя точками А и В оно содержит и весь отрезок АВ
- 19 В какой из моделей используется седловая точка?:
- А) В теории игр
- Б) Только неравенства
- В) Равенства и неравенства
- 20 Укажите, если в задаче линейного программирования допустимое множество не пусто и целевая функция ограничена, то
- А) Существует хотя бы одно оптимальное решение
- Б) Оптимальное решение не существует
- В) Допустимое множество не ограничено
- 21 Укажите, когда задача линейного программирования на максимум при решении геометрическим методом не имеет решений:
- А) Если область допустимых решений бесконечна

- Б) Если линия уровня перпендикулярна вектору-градиенту
- В) Если линия уровня перпендикулярна какому-либо функциональному ограничению задачи
- 22 Укажите, экономико-математическая модель межотраслевого баланса это:
- А) Макроэкономическая, детерминированная, имитационная, матричная модель
- Б) Макроэкономическая, детерминированная, балансовая, матричная модель
- В) Микроэкономическая, детерминированная, балансовая, регрессионная модель

Сложные (3 уровень)

- 23 Укажите в каком виде симплекс-метод предназначен для решения задачи линейного программирования:
- А) В стандартном виде
- Б) В тривиальном виде
- В) В каноническом виде
- 24 Укажите значение целевой функции, если симплексный метод это вычислительная процедура, основанная на принципе последовательного улучшения решений при переходе от одной базисной точки (базисного решения) к другой. При этом значение целевой функции:
- А) Увеличивается
- Б) Уменьшается
- В) Улучшается
- 25 Укажите, как при базисным решением, является одно из возможных решений, находящихся
- А) В вершинах области допустимых значений
- Б) В пределах области допустимых значений
- В) На границах области допустимых значений

Задания на установление соответствия

Установите соответствие между левым и правым столбцами.

Простые (1 уровень)

26 Установите соответствие: (1B, 2A)	
1. Транспортная задача является Вадачей программирования 2 Если в транспортной задаче объем спроса равен объему предложения, го такая задача называется:	А) Сбалансированной Б) Стандартной В) Линейного
27 Установите соответствие:	

- (15, 2A)
- 1. Один из алгоритмов нахождения решения задачи целочисленного программирования группы методов отсекающих плоскостей называется
- 2. Алгоритм последовательного
- А) Алгоритм симплекс-метода
- Б) Алгоритм метода Гомори
- С) Алгоритм метода ветвей и границ

улучшения плана, позволяющий осуществлять переход от одного допустимого базисного решения к другому таким образом, что значения целевой функции непрерывно возрастают и за конечное число шагов находится оптимальное решение, называется:

28 Установите соответствие:

(1A, 2F)

- 1. Задача, которая возникает при составлении наиболее экономного (т.е. наиболее дешевого) рациона питания животных, удовлетворя ющего определенным медицинским требованиям, называется:
- 2. Коммивояжер должен посетить один, и только один, раз каждый из **n** городов и вернуться в исходный пункт. Его маршрут должен минимизировать суммарную длину пройденного пути это:

Средне-сложные (2 уровень)

29. Установите соответствие:

- (1В, 2Б)
- 1. Симплексный метод решения задач линейного программирования включает:
- 2. Графический метод решения задачи линейного программи- рования включает:

- А) Задача о диете
- Б) Задача коммивояжера
- С) Задача о назначении

- А) Метод это подходы, пути и способы постановки и решения той или иной задачи в различных областях человеческой деятельности
- Б) Построение многоугольника допустимых решений
- В) Определение одного из допустимых базисных решений поставленной задачи (опорного плана), определение правила перехода к не худшему решению, проверка оптимальности найденного решения

30. Установите соответствие: **(1A, 2B)**

- 1 Игра, в которой интересы двух игроков строго противоположны, т.е. выигрыш одного есть проигрыш другого, называется 2 Игры, где одним из определяю щих факторов является внешняя среда или природа, которая может находится в одном из состояний, которые неизвестны лицу, прини-
- А) Игра двух лиц с нулевой суммой
- Б) Игра двух лиц с ненулевой суммой
- В) Игра против природы

мающему решение, называются:

31 Установите соответствие:

(1А, 2Б)

- 1 Метод потенциалов это:
- 2 Метод северо-западного угла это:
- А) Один из методов проверки опорного плана транспортной задачи на оптимальность
- Б) Один из группы методов определения первоначального опорного плана транспортной задачи
- В) Один из методов отсечения, с помощью которого решаются задачи целочисленного программирования
- 32 Установите соответствие:

(1A, 2F)

1 Если в транспортной задаче объем запасов превышает объем потребностей, в рассмотрение вводят 2 Если в транспортной задаче объем спроса равен объему предложения, то такая задача называется:

- А) Фиктивный пункт потребления
- Б) Закрытой
- В) Открытой
- 33 Установите соответствие:

(1B, 2A)

- 1. Задача линейного программирования может достигать максимального значения
 2 В линейных оптимизационных
- 2 В линейных оптимизационных моделях, решаемых с помощью геометрических построений число переменных должно быть
- А) Не больше двух
- Б) Во множестве точек
- В) В одной или во множестве точек

34 Установите соответствие:

(1B, 2A)

- 1 Модель задачи линейного программирования, в которой целевая функция исследуется на максимум
- А) Канонической
- Б) Стандартной
- В) Общей

и система ограничений задачи является системой неравенств, называется

2 Модель задачи линейного программирования, в которой целевая функция исследуется на максимум и система ограничений задачи является системой уравнений, называется

Сложные (3 уровень)

35 Установите соответствие: **(1А, 2Б)**

1 На трех складах имеется однородный товар в количествах 40, 40, 50 ед. Потребности четырех магазинов следующие: 10, 10, 50, 30. Определите потребности фиктивного потребителя 2 На трех складах имеется однородный товар в количествах 30, 40, 60 ед. Потребности трех магазинов следующие 20, 40, 50, Определите потребности фиктивного потребителя

- А) 30 ед
- Б) 20 ед
- В) 50 ед

Задания открытого типа

Задания на дополнение

Напишите пропущенное слово.

Простые (1	vnorent)
TIPOCIDIC (y pobemb,

36 В роли критерия оптимальности могут выступать минимум затрат)	(максимум прибыли или		
37 Задача состоит из целевой функции; области допустимы определяющими эту область, это			
38 Область допустимых решений - это область, в пределах ся:(выбор решений)	которой осуществляет-		
39 Краткое математическое изложение цели данной задачи функция)	это (Целевая		
40 Основная цель решения транспортной задачи это перевозки продукции)	(минимизация затрат на		
41 Платежной матрицей называется матрица, элементами к	1		
Средне-сложные (2 уровень)			
42 Верхней ценой парной игры является: игрока В)	(гарантированный проигрыш		
43 Зная платежную матрицу определить нижнюю и верхнюю цены игры (нижняя и верхняя равна 6)	4 5 6 7 9 3 4 5 7 6 7 6 10 8 11 8 5 4 7 3		
44 При решении задач целочисленного программирования метод(Гомори)	может применяться		
45 Заменив в матрице типа m×n строки соответственно сто(транспонированную матрицу)	лбцами получим		
46 От чего не зависит начальный план перевозок, получаем ла?(от стоимости)	ный методом северо-западного уг-		
47 Какая задача линейного программирования называется п неизвестных находят значения из целых чисел)	целочисленной? (если для		
48 Если один из игроков выигрывает ровно столько, скольниграх интересы ее участников прямо противоположны другназывается(антагонистической)			
49 Решить графически ЗЛП (min Z $= 2X_1^+ 3X_2 \rightarrow \min$ $x_1 + 5x_2 \leq 10$ $4x_1 + x_2 \geq 16$	Z= 8 в точке (4,0))		

$$x_1 \ge 0, x_2 \ge 0$$

50 Решить линейную модель	графическим способом:	(max Z= 6 в точке (0,2))
---------------------------	-----------------------	---------------------------

$$z = x+3y \rightarrow \max$$

$$\begin{cases} x+y \le 2\\ 2x+3y \ge 3\\ x, y \ge 0 \end{cases}$$

51 Сколько переменных р	разрешимы для графического	метода решения задачи линейного пр	0-
граммирования	(две переменных)		

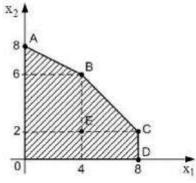
- 53 Геометрический смысл основной задачи линейного программирования заключается в отыскании такой точки многогранника решений, координаты которой доставят целевой функции задачи (Наибольшее или наименьшее значение)
- 54 Если область допустимых значений основной задачи линейного программирования не выпукло, то целевая функция достигает своего экстремума во внутренней точке этой области. Формулировка верна? ______ (Формулировка ошибочна)
- 55 Оптимальное решение задачи линейного программирования достигается _________ (в одной из угловых точек области решений задачи)

56 Найти оптимальный план и его сумму для транспортной задачи (в верхней строке таблиц указаны потребности b_j в грузе пунктов B_j ; в левом столбце - запасы груза a_i в пунктах A_i ; в остальных клетках - тарифы c_{ij}):

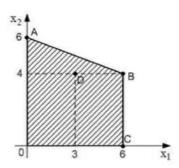
$A_i \setminus B_j$	50	80	90
110	7	8	1
110	2	4	5

(Оптимальный план, S=590 ден. ед.)

$A_i \setminus B_j$	50	80	90
110	7	8	1
		20	90
110	2	4	5
	50	60	

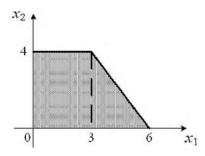

57. .Если в транспортной задаче суммарный запас груза у поставщиков меньше суммарного спроса потребителей, то:_______(необходимо ввести фиктивного поставщика)

58 Если в транспортной задаче суммарный запас груза у поставщиков больше суммарного спроса потребителей, то______ (необходимо ввести фиктивного потребителя)

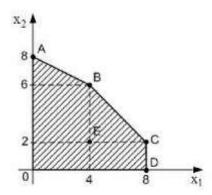

59 Если нижняя цена матричной игры равна верхней цене, то это соответствует наличию у платежной матрицы ______ (седловой точки)

61 Что показывает градиент функции______ (направление наискорейшего роста значений функции)

62 Область допустимых решений задачи линейного программирования имеет вид:

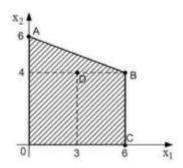


63 Область допустимых решений задачи линейного программирования имеет вид:

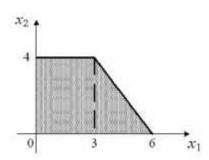


Тогда максимальное значение функции $z = x_1 + 4x_2$ равно (**34**)

64 Область допустимых решений задачи линейного программирования имеет вид:



65 Область допустимых решений ОАВСО задачи линейного программирования имеет вид


Тогда максимальное значение функции $z=4x_1+3x_2$ достигается в точке: ______(С)

66 Область допустимых решений задачи линейного программирования имеет вид:

Тогда максимальное значение функции $z=3x_1+2x_2$ достигается в точке: ______(**B**

67 Область допустимых решений задачи линейного программирования имеет вид:

Сложные (3 уровень)

68 Оптимальное решение в симплексной таблице определяется по целевой функции L)

69 Нахождение решения игры посредством представления данных задач в виде геометрических фигур на координатной плоскости это _____

(геометрическое решение игры)

3	2	1	4
---	---	---	---

70 Седловая	точка	матричной	игры,	заданная	платежно	й матрицей
равна		(трем)				

10	4	3	10
2	4	1	2

Карта учета тестовых заданий (вариант 1)

	Kapia y	ета тестовых задании (вариат	ui i <i>j</i>			
Компетенция	УК-1. Способен осу	УК-1. Способен осуществлять поиск, критический анализ и синтез информа-				
	ции, применять сис	гемный подход для решен	ия поставленных задач	[
Индикатор	УК-1.3 Имеет практ	ический опыт работы с ин	формационными исто	чниками,		
	опыт научного поис	ска, создания научных текс	стов			
Дисциплина	Исследование опера	ций				
		Тестовые задания Итого				
Уровень осво-	Закрытого типа		Открытого типа			
ения	Альтернативный	Установление соответ-				
	выбор	ствия/ последователь-	На дополнение			
		ности				
1.1.1 (20%)	5	2	7	14		
1.1.2 (70%)	17	7	24	48		
1.1.3 (10%)	3	1	4	8		
Итого:	25 шт.	10 шт.	35 шт.	70 шт.		

	Карта учета	тестовых заданий (вариант 2)			
Компетенция	УК-1. Способен осуществлять поиск, критический анализ и синтез информа-				
	ции, применять системный подход для решения поставленных задач				
Индикатор	УК-1.3 Имеет практичес	ский опыт работы с инфор	мационными источниками,		
	_	создания научных текстов	ŕ		
Дисциплина	Исследование опе				
Уровень		Тестовые задания			
освоения	Zakni it	ого типа	Открытого типа		
ОСВОСНИЯ	Альтернативного выбора	Установление соответ-	Открытого типа		
	Альтернативного выоора	ствия/Установление после-	На дополнение		
		довательности	на дополнение		
1.1.1	1 Укажите правильное	26 Установите соответствие:	36 В роли критерия оптимально-		
1.1.1	определение модели:	1.Транспортная задача явля-	сти могут выступать		
	А) Метод научного позна-	ется	37 Задача состоит из целевой		
	ния реально существую-	2 Если в транспортной зада-	функции; области допустимых		
	щих объектов	че объем спроса равен объ-	решений; системы ограничений,		
	Б) Способ достижения це-	ему предложения,	определяющими эту область, это		
	ли, определенным образом	то такая задача называется			
	упорядоченная	А) Сбалансированной	38 Область допустимых реше-		
	В) Материально или мыс-	Задачей программи-	ний - это область, в пределах ко-		
	ленно представляемый	рования	торой осуществляет-		
	объект, который в процес-	Б) Стандартной	ся:		
	се исследования замещает	В) Линейного	39 Краткое математическое из-		
	объект - оригинал; при	27 Установите соответствие:	ложение цели данной задачи это		
	этом отражает его наибо-	1. Один из алгоритмов	40. Oayanyag yayı nayıayıg		
	лее существенные свойства 2 Множество всех допу-	нахождения 2. Алгоритм последова-	40 Основная цель решения транспортной задачи это		
	стимых решений системы	тельного	транспортной задачи это		
	задачи линейного про-	улучшения плана, позво-	41 Платежной матрицей называ-		
	граммирования является:	ляющий	ется матрица, элементами кото-		
	А) Вогнутым	осуществлять переход от	рой являются:		
	Б) Одновременно выпук-	одного			
	лым и вогнутым	допустимого базисного			
	В) Выпуклым	решения			
	3 Алгоритм перехода к	к другому таким образом,			
	новому опорному плану	что			

	транспортной задачи,	значения целевой функции	
	дающему меньшее значе-	непре-	
	ние функции цели, до	1	
	обнаружения	рывно возрастают и за ко-	
	**	нечное	
	оптимального плана назы-	число шагов находится оп-	
	вается	тималь-	
	А) Алгоритм метода Го-	ное решение, называется:	
	мори	А) Алгоритм симплекс-	
	Б) Алгоритм симплекс	метода	
	метод	решения задачи целочис-	
	В) Алгоритм улучшения	ленного	
	плана транспортной задачи	Б) Алгоритм метода Гомори	
	4 Укажите в какой роли	программирования группы	
	критерия оптимальности	методов	
	могут выступать	С) Алгоритм метода ветвей	
	А) Максимум прибыли	и границ	
	Б) Издержки	отсекающих плоскостей	
	В) Прибыль	называется	
	5 Укажите, оптимизаци-	28 Установите соответствие:	
	онная модель состоит из:	1. Задача, которая возникает	
	А) Уравнений, тождеств и	при	
	неравенств	составлении наиболее эко-	
	Б) Целевой функции; обла-	номного	
	сти допустимых решений;	2. Коммивояжер должен	
	системы ограничений,	посетить один,	
	определяющими эту об-	и только один, раз каждый	
	ласть	из n	
	В) Целевой функции; си-	городов и вернуться в ис-	
	стемы ограничений, опре-	ходный пункт.	
	деляющими эту область	Его маршрут должен мини-	
	,,,,,	мизировать	
		суммарную длину пройден-	
		ного пути это:	
		А) Задача о диете	
		(т.е. наиболее дешевого)	
		рациона	
		Б) Задача коммивояжера	
		питания животных, удовле-	
		творя –	
		С) Задача о назначении	
		ющего определенным меди-	
		цинским	
		требованиям, называется:	
1 1 2	6 Укажите определение	29 Установите соответствие:	42 D
1.1.2	1		42 Верхней ценой парной
	«моделирование»	1. Симплексный метод ре-	игры являет-
	А) Конструирование моде-	шения задач линейного про-	ся:
	лей	граммирования	43 Зная платежную матри-
	Б) Процесс построения,	ВКЛЮЧает:	цу определить нижнюю
	изучения и применения	2. Графический метод ре- шения задачи линейного	" 1
	моделей	1	и верхнюю цены иг-
	В) Процесс построения	программи- рования вклю-	ры
	моделей	чает:	44 При решении задач це-
	7 Укажите область допу-	А) Метод это подходы, пути	лочисленного программи-
	стимых решений - это об-	и способы постановки и ре-	
	ласть, в пределах которой	шения той или иной задачи	рования может применяться
	осуществляется:	в различных областях чело-	
	А) Выбор решений	веческой деятельности	ме-
	Б) Выбор целевой функции	Б) Построение многоуголь-	тод
	В) Решение системы урав-	ника допустимых решений	
	нений	В) Определение одного из	45.2
	8 Укажите, что такое це-	допустимых базисных ре-	45 Заменив в матрице типа
	левая функция – это:	шений поставленной задачи	м×п строки соответственно
			in a cipoka coorbererbenno
	А) Подробное математиче-	(опорного плана), определе-	41

- ское изложение цели данной задачи
- Б) Краткое математическое изложение решения данной залачи
- B) Краткое математическое изложение цели данной задачи
- 9 Укажите, транспортная задача является задачей:
- A) Линейного программирования
- Б) Целочисленного программирования
- В) Дискретного программирования
- 10 Укажите, что подавляющее большинство методов оптимизации, позволяет находить
- A) Только глобальные экстремумы
- Б) Только локальные экстремумы
- В) Нули целевой функции 11 Укажите в моделях смесевых задач в качестве искомых переменных выступает:
- А) Объем (количество) получаемой смеси
- Б) Количество исходных компонентов, которое входит в готовую смесь
- В) Цена исходных компонентов
- 12 Укажите критерий оптимальности это показатель, который выражает:
- А) Предельную меру экономического эффекта решения
- Б) Среднюю меру экономического эффекта решения
- В) Суммарную меру экономического эффекта решения
- 13 Основным методом решения транспортной задачи является:
- A) Метод северо-западного угла
- Б) Венгерский алгоритм
- В) Метод потенциалов
- 14 Математической моделью конфликтных ситуаций является:
- А) Имитационная модель
- Б) Транспортная модель
- В) Теория игр
- 15 Укажите, к смесевым задачам относится

- ние правила перехода к не худшему решению, проверка оптимальности найденного решения
- 30 Установите соответствие: 1 Игра, в которой интересы двух игроков строго противоположны, т.е. выигрыш одного есть проигрыш другого, называется
- 2 Игры, где одним из определяю щих факторов является внешняя среда или природа, которая может находится в одном из состояний, которые неизвестны лицу, принимающему решение,
- называются:
- A) Игра двух лиц с нулевой суммой
- Б) Игра двух лиц с ненулевой суммой
- В) Игра против природы
- 31 Установите соответствие:
- 1 Метод потенциалов это:
- 2 Метод северо-западного угла
- это:
- А) Один из методов проверки опорного плана транспортной задачи на оптимальность
- Б) Один из группы методов определения
- первоначального опорного плана транспортной задачи
- В) Один из методов отсечения, с помощью которого решаются
- задачи целочисленного программирования
- 32 Установите соответствие: 1 Если в транспортной задаче объем запасов превышает объем потребностей, в рассмотрение вводят
- 2 Если в транспортной задаче объем спроса равен объему предложения, то такая задача называется:
- A) Фиктивный пункт потребления
- Б) Закрытой
- В) Открытой
- 33 Установите соответствие:
- 1. Задача линейного программиро- вания может достигать максимального значения
- 2 В линейных оптимизаци-

столоцами полу-
чим
46 От чего не зависит
начальный план перевозок
получаемый методом севе-
ро-западного уг-
ла?

47 Какая задача линейного программирования называется целочисленной?

48 Если один из игроков выигрывает ровно столько, сколько проигрывает другой, то в таких играх интересы ее участников прямо противоположны друг другу. Такая игра из двух игроков называется

49 Решить графически ЗЛП

50 Решить линейную модель графическим способом:

$$z = \overline{x+3y} \rightarrow max$$

$$\begin{cases} x + y \le 2 \\ 2x + 3y \ge 3 \\ x, y \ge 0 \end{cases}$$

- 51 Сколько переменных разрешимы для графического метода решения задачи линейного программирования
- 52 Всегда ли можно свести задачу линейного программирования на минимум к задаче линейного программирования на максимум?
- 53 Геометрический смысл основной задачи линейного программирования заключается в отыскании такой точки многогранника решений, координаты которой доставят целевой функции задачи 54 Если область допустимых значений основной задачи линейного програм-

задача составления:

- А) Рационального раскроя
- Б) Рационального питания
- В) Рационального использования ресурсов
- 16 Укажите основную цель решения транспортной задачи
- А) Уменьшение количества пунктов назначения
- Б) Минимизация количества перевозимого груза
- В) Минимизация затрат на перевозки продукции
- 17 Укажите какая задача является задачей линейного программирования:
- А) Составление диеты
- Б) Управления запасами
- В) Формирование календарного плана реализации проекта
- 18 Укажите множество n мерного арифметического точечного пространства называется выпуклым, ести.
- А) Счетно и замкнуто
- Б) Равно объединению нескольких конечных множеств
- В) Вместе с любыми двумя точками A и B оно содержит и весь отрезок AB
- 19 В какой из моделей используется седловая точка?:
- А) В теории игр
- Б) Только неравенства
- В) Равенства и неравенства
- 20 Укажите, если в задаче линейного программирования допустимое множество не пусто и целевая функция ограничена, то
- А) Существует хотя бы одно оптимальное решение
- Б) Оптимальное решение не существует
- В) Допустимое множество не ограничено
- 21 Укажите, когда задача линейного программирования на максимум при решении геометрическим методом не имеет решений:
- A) Если область допустимых решений бесконечна
- Б) Если линия уровня перпендикулярна векторуградиенту

онных моделях, решаемых с помощью геометрических построений число переменных должно быть

- А) Не больше двух
- Б) Во множестве точек
- В) В одной или во множестве точек
- 34 Установите соответствие: 1 Модель задачи линейного программирования, в которой целевая функция исследуется на максимум и система ограничений задачи является системой неравенств, называется
- 2 Модель задачи линейного программирования, в которой целевая функция исследуется на максимум и система ограничений задачи является системой уравнений, называется
- А) Канонической
- Б) Стандартной
- В) Общей

мирования не выпукло, то целевая функция достигает своего экстремума во внутренней точке этой области. Формулировка верна?

55 Оптимальное решение задачи линейного программирования достигается

56 Найти оптимальный план и его сумму для транспортной задачи (в верхней строке таблиц указаны потребности b_j в грузе пунктов B_j ; в левом столбце запасы груза a_i в пунктах A_i ; в остальных клетках - тарифы c_{ij}):

$A_i \setminus B_j$	50	80	90
110	7	8	1
110	2	4	5

$A_i \setminus B_j$	50	80	90
110	7	8	
		20	90
110	2	4	
	50	60	

57Если в транспортной
задаче суммарный запас
груза у поставщиков мень-
ше суммарного спроса по-
требителей,

то:______ 58 Если в транспортной задаче суммарный запас груза у поставщиков больше суммарного спроса потребителей,

TO

59 Если нижняя цена матричной игры равна верхней цене, то это соответствует наличию у платежной матрицы

60 Если в транспортной задаче запасы поставщиков равны потребностям поку-

	В) Если линия уровня	пателей, то модель такой
	перпендикулярна какому-	задачи называется
	либо функциональному	
	ограничению задачи 22 Укажите, экономико-	61 Что показывает градиент
	математическая модель	функ-
	межотраслевого баланса это:	ции
	А) Макроэкономическая,	
	детерминированная, ими-	62 Область допустимых
	тационная, матричная мо-	решений задачи линейного
	дель	программирования имеет
	Б) Макроэкономическая,	
	детерминированная, балан-	вид:
	совая, матричная модель	X ₂ ♠
	В) Микроэконом	
	Микроэконов	8 A
		6 4////
		V//////80x
		~ ////////////////////////////////////
		///////////////////////////D
		0 4 8 x
		Тогда максимальное значе-
		ние функции $z=x_1+3x_2$ до-
		стигается в точке:
		63 Область допустимых
		решений задачи линейного
		программирования имеет
		вид:
		x ₂ f
		6
		4 ////////////////////////////////////
		0 3 6 x ₁
		Тогда максимальное значе-
		ние функции $z = x_1 + 4x_2$
		равно
		64 Область допустимых
		решений задачи линейного
		программирования имеет
		вид:
Ĺ		ыд.

<u></u>	
	$x_2 \uparrow$
	4
	0 3 6 x
	T
	Тогда максимальное значе-
	ние функции $z = 5x_1 + 2x_2$ равно
	65 Область допустимых
	решений ОАВСО задачи
	линейного программирова-
	ния имеет вид
	X ₂ ♠
	8 A
	В
	2 ////////////////////////////////////
	0 4 8 x
	Тогда максимальное значение функции $z=4x_1+3x_2$ до-
	стигается в точке:
	CIM de les Biolike.
	66 Область допустимых
	решений задачи линейного
	программирования имеет
	вид:
	x ₂ † .
	6
	4 //// B
	//////////////////////////c
	0 3 6 x ₁
	Тогда максимальное значе-
	ние функции $z=3x_1+2x_2$ до-
	стигается в точке:
	(7.05
	67 Область допустимых
	решений задачи линейного
	программирования имеет вид:

			x_2 x_2 x_3 x_4 x_4 x_5 x_6 x_6 x_8 x_8 x_8 x_9
1.1.3	23 Укажите в каком виде симплекс-метод предназначен для решения задачи линейного программирования: А) В стандартном виде В) В тривиальном виде В) В каноническом виде 24 Укажите значение целевой функции, если симплексный метод - это вычислительная процедура, основанная на принципе последовательного улучшения решений при переходе от одной базисной точки (базисного решения) к другой. При этом значение целевой функции: А) Увеличивается В) Улучшается В) Улучшается 25 Укажите, как при базисным решением, является одно из возможных решений, находящихся А) В вершинах области допустимых значений В) На границах области допустимых значений	35 Установите соответствие: 1 На трех складах имеется однородный товар в количествах 40, 40, 50 ед. Потребности четырех магазинов следующие: 10, 10, 50, 30. Определите потребности фиктивного потребителя 2 На трех складах имеется однородный товар в количествах 30, 40, 60 ед. Потребности трех магазинов следующие 20, 40, 50, Определите потребности фиктивного потребителя A) 30 ед Б) 20 ед В) 50 ед	68 Оптимальное решение в симплексной таблице определяется по 69 Нахождение решения игры посредством представления данных задач в виде геометрических фигур на координатной плоскости это 70 Седловая точка матричной игры, заданная платежной матрицей равна
Итого:	25 шт.	10 шт.	35 шт.

Критерии оценивания

Критерии оценивания тестовых заданий

Критерии оценивания: правильное выполнение одного тестового задания оценивается 1 баллом, неправильное -0 баллов.

Максимальная общая сумма баллов за все правильные ответы составляет наивысший балл-100 баллов.

Шкала оценивания результатов компьютерного тестирования обучающихся (рекомендуемая)

мондуомал)			
Оценка	Процент верных ответов	Баллы	
«удовлетворительно»	70-79%	61-75 баллов	
«хорошо»	80-90%	76-90 баллов	

((OTTTTTTTTT))	91-100%	91-100 баллов
«ОТЛИЧНО»	91-100%	91-100 0aiiilob

Ключи ответов

№ тесто-	Номер и вариант пра-
№ 16С10- ВЫХ 3а-	вильного ответа
даний	BUJIBHOI O OIBCIA
1	В) Материально или
1	мысленно представляе-
	мый объект, который в
	процессе исследования
	замещает объект - ори-
	гинал; при этом отража-
	ет его наиболее суще-
2	ственные свойства
2	В) Выпуклым
3	В) Алгоритм улучше-
	ния плана транспортной
	задачи
4	А) Максимум прибыли
5	Б) Целевой функции;
	области допустимых
	решений; системы огра-
	ничений, определяю-
	щими эту область
6	Б) Процесс построения,
	изучения и применения
	моделей
7	А) Выбор решений
8	В) Краткое математиче-
	ское изложение цели
	данной задачи
9	А) Линейного програм-
	мирования
10	Б) Только локальные
	экстремумы
11	Б) Количество исходных
	компонентов, которое
	входит в готовую смесь
12	А) Предельную меру
	экономического эффек-
	та решения
13	В) Метод потенциалов
14	В) Теория игр
15	Б) Рационального пита-
	ния
16	В) Минимизация затрат
	на перевозки продукции
17	А) Составление диеты
18	В) Вместе с любыми
	,

TH (JIBCIUB
36	максимум прибыли или минимум затрат
37	оптимизационная модель
38	выбор решений
39	Целевая функция
40	минимизация затрат на перевозки про- дукции
41	выигрыши, соответствующие стратегиям игроков
42	гарантированный проигрыш игрока В
43	нижняя и верхняя цена игры равна 6)
44	Гомори
45	транспонированную матрицу
46	от стоимости
47	если для неизвестных находят значения из целых чисел
48	антагонистической
49	min Z= 8 в точке (4,0))
50	max Z= 6 в точке (0,2)
51	две переменных
52	да, возможно
53	Наибольшее или наименьшее значение
54	Формулировка ошибочна

	двумя точками А и В
	оно содержит и весь от-
	резок АВ
19	А) В теории игр
	, , , ,
20	А) Существует хотя бы
	одно оптимальное ре-
	шение
21	А) Если область допу-
	стимых решений беско-
	нечна
22	Б) Макроэкономическая,
	детерминированная, ба-
	лансовая, матричная
	модель
23	В) В каноническом виде
24	В) Улучшается
25	А) В вершинах области
	допустимых значений
26	1B, 2A
27	1Б, 2А
28	1А, 2Б
29	1В, 2Б
30	1A, 2B
31	1А, 2Б
32	1А ,2Б
33	1B ,2A
34	1B, 2A
35	1А, 2Б
33	171, 20

55	в одной из угловых точек области ре-
	шений задачи
56	Оптимальный план, S=590 ден. ед.)
57	необходимо ввести фиктивного поставщика
58	необходимо ввести фиктивного потре- бителя)
59	седловой точки
60	закрытой
61	направление наискорейшего роста зна-
	чений функции
62	A
63	34
64	30
65	С
66	В
67	29
68	строке целевой функции L
69	геометрическое решение игры
70	трем

Демоверсия

Комплект тестовых заданий

Компетенция УК-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

Индикатор УК-1.3 Имеет практический опыт работы с информационными источниками, опыт научного поиска, создания научных текстов

Дисциплина Исследование операций

Задания закрытого типа Задания альтернативного выбора Выберите один правильный ответ

Простые (1 уровень)

- 1 Укажите, оптимизационная модель состоит из:
- А) Уравнений, тождеств и неравенств
- Б) Целевой функции; области допустимых решений; системы ограничений , определяющими эту область
 - В) Целевой функции; системы ограничений, определяющими эту область
 - 2 Укажите в какой роли критерия оптимальности могут выступать
 - А) Максимум прибыли
 - Б) Издержки
 - В) Прибыль

Средне -сложные (2 уровень)

- 3 В какой из моделей используется седловая точка?:
- А) В теории игр
- Б) Только неравенства
- В) Равенства и неравенства
- 4 Укажите, если в задаче линейного программирования допустимое множество не пусто и целевая функция ограничена, то
 - А) Существует хотя бы одно оптимальное решение
 - Б) Оптимальное решение не существует
 - В) Допустимое множество не ограничено
- 5 Укажите, когда задача линейного программирования на максимум при решении геометрическим методом не имеет решений:
 - А) Если область допустимых решений бесконечна
 - Б) Если линия уровня перпендикулярна вектору-градиенту
- В) Если линия уровня перпендикулярна какому-либо функциональному ограничению задачи
 - 6 Укажите, экономико-математическая модель межотраслевого баланса это:
 - А) Макроэкономическая, детерминированная, имитационная, матричная модель
 - Б) Макроэкономическая, детерминированная, балансовая, матричная модель
 - В) Микроэкономическая, детерминированная, балансовая, регрессионная модель

- 7 Укажите множество n мерного арифметического точечного пространства называется выпуклым, если:
 - А) Счетно и замкнуто
 - Б) Равно объединению нескольких конечных множеств
 - В) Вместе с любыми двумя точками А и В оно содержит и весь отрезок АВ
 - 8 Укажите какая задача является задачей линейного программирования:
 - А) Составление диеты
 - Б) Управления запасами
 - В) Формирование календарного плана реализации проекта
 - 9 Укажите основную цель решения транспортной задачи
 - А) Уменьшение количества пунктов назначения
 - Б) Минимизация количества перевозимого груза
 - В) Минимизация затрат на перевозки продукции

Сложные (3 уровень)

- 10 Укажите в каком виде симплекс-метод предназначен для решения задачи линейного программирования:
 - А) В стандартном виде
 - Б) В тривиальном виде
 - В) В каноническом виде

Задания на установление соответствия.

Установите соответствие между левым и правым столбцами.

Простые (1 уровень)

11	У	становите	соответствие:
----	---	-----------	---------------

(1B, 2A)

1. Транспортная задача является Задачей _____ программирования 2 Если в транспортной задаче объем спроса равен объему предложения, то такая задача называется:

- А) Сбалансированной
- Б) Стандартной
- В) Линейного

Средне-сложные (2 уровень)

12 Установите соответствие:

(1B, 2A)

- 1.Задача линейного программирования может достигать максимального значения
 2 В линейных оптимизационных
- 2 В линейных оптимизационных моделях, решаемых с помощью геометрических построений число переменных должно быть
- А) Не больше двух
- Б) Во множестве точек
- В) В одной или во множестве точек

13 Установите соответствие:

(1A, 2F)

1 На трех складах имеется однородный товар в количествах 40, 40, 50 ед. Потребности четырех магазинов следующие: 10, 10, 50, 30. Определите потребности фиктивного потребителя 2 На трех складах имеется однородный товар в количествах 30, 40, 60 ед. Потребности трех магазинов следующие 20, 40, 50, Определите потребности фиктивного потребителя

- А) 30 ед
- Б) 20 ед
- В) 50 ед

14 Установите соответствие: **(1В, 2A)**

1 Модель задачи линейного программирования, в которой целевая функция исследуется на максимум и система ограничений задачи является системой неравенств, называется 2 Модель задачи линейного программирования, в которой целевая функция исследуется на максимум и система ограничений задачи является системой уравнений, называется

- А) Канонической
- Б) Стандартной
- В) Общей

Сложные (3 уровень) 15

15 Установите соответствие: **(1A, 2Б)**

1 Если в транспортной задаче объем запасов превышает объем потребностей, в рассмотрение вводят 2 Если в транспортной задаче объем спроса равен объему предложения, то такая задача называется:

- А) Фиктивный пункт потребления
- Б) Закрытой
- В) Открытой

Задания открытого типа

Задания на дополнение

Напишите пропущенное слово.

Простые (1 уровень)

16 Платежной матрицей называется матрица, элементами которой являются: (выигрыши, соответствующие стратегиям игроков)

17 Основная цель решения транспортной задачи это ______(минимизация затрат на перевозки продукции)

18 Краткое математическое изложение цели данной задачи это (Цел вая функция)
Средне-сложные (2 уровень)
19 Заменив в матрице типа m×n строки соответственно столбцами получим
20 От чего не зависит начальный план перевозок, получаемый методом северо-западног угла?(от стоимости)
21 Какая задача линейного программирования называется целочисленной? (если для неизвестных находят значения из целых чисел)
22 Сколько переменных разрешимы для графического метода решения задачи линейног программирования (две переменных)
23 Всегда ли можно свести задачу линейного программирования на минимум к задаче линейного программирования на максимум? (да, возможно)
24 Геометрический смысл основной задачи линейного программирования заключается и отыскании такой точки многогранника решений, координаты которой доставят целевой функции задачи (Наибольшее или наименьшее значение)
25 Если область допустимых значений основной задачи линейного программирования выпукло, то целевая функция достигает своего экстремума во внутренней точке этой области Формулировка верна? (Формулировка ошибочна)
26 Оптимальное решение задачи линейного программирования достигается(в одной из угловых точек области решений задачи)
27 Если нижняя цена матричной игры равна верхней цене, то это соответствует наличин у платежной матрицы (седловой точки)
Сложные (3 уровень) 28 Оптимальное решение в симплексной таблице определяется по (строке целевой функции L)
29 Нахождение решения игры посредством представления данных задач в виде геометрических фигур на координатной плоскости это (закрытой)
30 Что показывает градиент функции (направление наискорейшего роста значений функции)

Ключи ответов

№ тесто-	Номер и вариант пра-
вых за-	вильного ответа
даний	

16	выигрыши, соответствующие стратегиям		
	игроков)		

1	Б) Целевой функции;
	области допустимых
	решений; системы огра-
	ничений, определяю-
	щими эту область
2	А) Максимум прибыли
3	В теории игр
4	А) Существует хотя бы
	одно оптимальное ре-
	шение
5	А) Если область допу-
	стимых решений беско-
	нечна
6	Б) Макроэкономическая,
	детерминированная, ба-
	лансовая, матричная
	модель
7	В) Вместе с любыми
	двумя точками А и В
	оно содержит и весь от-
	резок АВ
8	А) Составление диеты
9	В) Минимизация затрат
	на перевозки продукции
10	В) В каноническом виде
11	1B, 2A
12	1B, 2A
13	1А, 2Б
14	1B, 2A
15	1А, 2Б

17	минимизация затрат на перевозки про- дукции	
18	Целевая функция	
19	транспонированную матрицу	
20	от стоимости	
	or crommoern	
21	две переменных	
22	две переменных	
23	да, возможно	
24	Наибольшее или наименьшее значение	
25	Формулировка ошибочна	
26	(в одной из угловых точек области решений задачи)	
27	(седловой точки)	
28	(строке целевой функции L)	
29	закрытой	
30	направление наискорейшего роста значений функции	